
MUNDBINET: ITERATIVELY OPTIMIZING THE TRAINING OF A
CNN TO CLASSIFY COVID-19 FACE MASK PLACEMENT

Jacob Qvist Jensen
Department of Computer Science

Aarhus University
Denmark

201508195@post.au.dk

Morten Astrup
Department of Computer Science

Aarhus University
Denmark

201705289@post.au.dk

Martin Kjær
Department of Computer Science

Aarhus University
Denmark

201709372@post.au.dk

May 2, 2022

ABSTRACT

In this paper it is described how a Convolutional Neural Network called MundbiNet has been
developed to classify the placement of a face mask given an image. Through the development
and testing of different versions of the MundbiNet model, the importance of well fitted data and
regularization became clear. The use of a homogeneous dataset generated from an AI model
augmented with face masks using a third party face-detection CNN, tended to make the model overfit
which was discovered during several different experiments. This lead to experiments and discussions
on pre-processing and regularization on the training data in order to make the model perform better
on unseen data. One of the major issues of the model was the poor performance on images with bad
lightning. The result of the final model and its performance is described using different visualization
tools like, heatmaps and a t-SNE model. The conclusion on the performance of the model is that it
has great performance on unseen data under the right conditions, but still has some limitations on the
performance on images from the wild, which is likely due to the fact that the training data is very
generic without much variation.

Keywords MundbiNet · CNN · Multi-class classification · Heatmaps · SoftMax · Batch normalization · t-SNE ·
COVID-19

1 Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has nearly paralyzed most of the society since March
2020. Restrictions are rolled out by the governments all over the World to prevent a rapid spread of the severe
coronavirus 2. Early on in the crisis face masks were worn by the inhabitants of Wuhan, which was formerly known
as the epicenter of the virus. Later on at the 20th of July 2020 it became mandatory to wear a mask in all public
buildings in France1. This restriction later became mandatory in Denmark as well. A face mask can be worn in many
different ways, but if it is placed incorrectly it looses its effect2. As it has become a tendency that people wear the mask
incorrectly, some governmental institutions have chosen to produce material on how not to wear a face mask3. Why do
the governments not use a convolutional neural network optimized for predicting the placement of a mask? This tool
could be used to monitor how many people are wearing their mask incorrectly or help people adjusting to the correct
and safe placement of the mask. In this project we present MundbiNet.

The purpose of project MundbiNet is to develop and train a convolutional neural network that can predict four different
placements of the face mask, which are:

1http://thinkeuropa.dk/politik/tidslinje-over-coronakrisen-hvad-skete-der-og-hvornaar
2https://www.hopkinsmedicine.org/health/conditions-and-diseases/coronavirus/proper-mask-wearing-coronavirus-prevention-

infographic
3https://www.rochesterregional.org/news/2020/07/how-not-to-wear-a-mask



MAY 2, 2022

• Correct
• Below Nose
• Chin
• No Mask

The first one is called Correct and represents all correctly placed masks, which is a mask that covers nose, mouth and
chin as described by Apotek4. The second one is called Below Nose and is a variant were the nose is free form the
mask, but the rest is covered. The third variant is called Chin and it only covers the chin. The last variant is called No
Mask and that is a face without a mask.

We chose to create live video functionality, such that it is possible to predict the mask position through a webcam in
real-time. This was built based on an existing model described in subsubsection 3.3.2 that uses a binary classifier. By
manipulated the python script it was adapted to function with MundbiNet.

Figure 1: Image of the live video prediction

The CNN in this project is based on knowledge gained through the course of Deep Learning for Visual Recognition at
Aarhus University, which have been taught in a top-down approach.

The research questions of the project are as follows:

• Is it possible to build a multi-class classifier that can classify 4 different variations of mask placement?
• How accurate is the classifier on images it has never seen?
• How well is the classifier at predicting on real images, when it has been trained on generic AI generated

images?

An answer to the research questions are presented in section 6 based on the classifier that has been fine-tuned over
several iterations in subsection 3.3.

2 Related work

LeNet-5[1] was the first convolutional neural network to be published as scientific work and changed the way of training
a neural network. The main idea behind this CNN was to predict the numbers of a financial check, to make this task
automated instead of manually reading the numbers. Before LeNet-5, visual recognition was an expert machine learning
task which included feature engineering by hand. LeCun et al. presented a CNN that was built on 3 main ideas: Spacial
sub-sampling, local receptive fields and shared weights. Local receptive fields combined with shared weights are crucial
for the convolutional layers in most CNNs and LeCun et al’s work paved the way for the field of deep learning for
visual recognition. Their results were compared with different other classifiers as e.g. earlier versions of LeNet, K-NN
classifiers with a Euclidean distance measure between input images and also simple linear classifiers. LeNet-5 achieved
an error rate below 1%, which at the time of doing the research was nearly the best achieved. Despite the good results,
the architecture of LeNet-5 was not perfect.

A lot has happened since the early days of LeCun et al’s LeNet-5. Computation power is much cheaper and it is
therefore possible to train models faster and also more complex. Since deep learning is used in many different cases it

4https://www.apoteket.dk/sundhed/forebyggelse/brug-af-mundbind

2



MAY 2, 2022

can sometimes be hard to find large and also reliable datasets. Pre-processing and data augmentation are widely used
techniques for tweaking and extending the datasets by changing the images. Data augmentation can for instance be
used to enlarge the dataset, which is commonly used for smaller datasets[3]. Being able to understand what the triggers
the model can also be crucial. Heatmaps can be used to figure out what a deep learning model have actual learned by
visualizing it for the developer[4].

The latest research shows that the pandemic outbreak also pushes the limits of deep learning research. M. Loey et
al[2] presents their work on how a hybrid model that combines deep learning and traditional machine learning can
predict whether a person has a mask on or not. They look at different datasets, where 1/3 is images of real people
with real masks and 2/3 are generated. The World is not as binary as M. Loey et al presents it. Humans are known to
create uncertainty and are not programmable machines that only have a mask correctly placed or are not wearing it. A
campaign in America trained the population to wear the mask incorrectly5, which makes the mask ineffective. Instead
of creating a binary classifier, we believe that governments have to be able to predict how the mask is placed. Also,
to evaluate our model, we will use heatmaps to show what triggers the classifier, where M. Loey et al only look into
accuracy since they are trying to get a better accuracy compared to other researchers.

3 Methods

This section describes the methods that characterises the project. Firstly, the network architecture is described in
subsection 3.1. In subsection 3.2 the dataset is described and analyzed. Afterwards in subsection 3.1 the network
architecture is explained. Lastly, the experiments that were carried out in the project are described in subsection 3.3.

3.1 Network architecture

The network architecture in Figure 2 is based on several iterations from subsection 3.3. The architecture is inspired
from a Github Repository of a Face Mask Detector6 by Chandrika Deb, and our experiments share a lot of code with
this repository. Especially when predicting from images and through the webcam. The many iterations have shaped the
architecture and two parts separates this model from most of the other explored 1) Batch normalization layer and 2)
Dropout layer. Batch normalization enforces zero mean and unit variance. By normalizing activations throughout the
network, batch normalization prevents small changes to the parameters, which potentially could have been one of the
issues early on in subsection 3.3. Dropout enforces the network to not only rely on a single neuron, which could have
been the case in the early experiments in subsection 3.3. Batch Normalization and Dropout were both implemented as
regularisation techniques as an effort to decrease how overfit the model was. Our network ended up being very shallow,
which is also true for many other face mask detectors we found online. Our reasoning behind this is that we did not
want the network to over interpret many of the details. Its only task is to spot a face mask and its position. It must
be said that all these changes to the model over time is based on the material presented in the lectures and the model
therefore also evolved with the progress of the semester.

3.2 Dataset

The dataset consists of 40.000 images from www.generated.photos, which is a service that sells AI generated images
for deep learning. Luckily, they provide a free set of images for research purposes, which we applied for. We received
10.000 images, which we used for creating our dataset that contains 4 different labelled categories: 1) Without mask 2)
With mask perfect placed 3) With mask placed below nose 4) With mask placed below mouth. In Figure 3 a snippet
of the images with the four different categories can be seen, but with a higher resolution. The images in the dataset
are 256x256 pixels and are in .jpg format. The dataset is split into a training and a testing set. 80% of the dataset is
placed in training and 20% is in testing. We are aware of the fact that it is better to split the dataset into 3 different sets:
training, validation and test, but we have chosen to extract a little mini-set for the validation part with only 16 images,
which is 4 from each category. Our dataset is not that big and this is mainly the reason by the decision. Cross validation
could also have been an opportunity since we have a small dataset, but as it is not frequently used in deep learning, we
chose not to use it. While working with the data, we have created a set of assumptions about the data our model should
be able to handle and what not to:

1. Should be able to handle blue face masks.

2. Should be able to handle studio lighted images of faces.

5https://www.forbes.com/sites/mishagajewski/2020/07/11/were-trying-to-get-people-to-wear-masks-the-wrong-
way/?sh=5e818ddd232e

6https://github.com/chandrikadeb7/Face-Mask-Detection

3

www.generated.photos


MAY 2, 2022

Figure 2: CNN architecture

3. The model is not build to being able to predict any arbitrary kind of faces. This means that we have not focused
on generalizing the dataset, but we still have all races and ages represented in the dataset. For instance, it is not
a goal to be able to predict a face from the side.

4. Should be able to handle sheared images, which was handled by a shear range of 0.1.

5. Should be able to handle different zoom levels.

6. Should be able to handle differently scaled images, which was handled with a rescale of 1./255.

Data augmentation of the dataset is described in subsubsection 3.2.1 and pre-processing of the dataset is described in
subsubsection 3.2.2.

3.2.1 Data augmentation

The first and most significant change to the dataset is the augmentation of face masks, which extended the dataset from
10.000 to 40.000 images and thereby extended the dataset with 3 extra categories of people with face mask placed in
different positions. A python script was developed that used a face recognition model to predict positions of crucial
points in the facial region. These points were the position of the tip of the nose, the center of the chin and the center of
the lower lip. This allowed the script to use three different strategies, one for each class, to augment the mask on the
input image. Other parameters as the rotation of the head was also taken into account when, the masks were mounted.
Before the training of the model started, we built a script that cropped out the face of the person since this was the only
part of the image that had to be used for the training. This was chosen to lower the background clutter effect on the
results and it also created an opportunity to use the prediction model on other images than the ones in the dataset.

4



MAY 2, 2022

Figure 3: One image from each category of the same "person". From left: No mask, perfect placed, below nose and
below mouth.

3.2.2 Pre-processing of images

In the following section we describe how we have pre-processed the images before feeding them into the network. In
order order to make the model less prone to overfitting, we have applied different pre-processing techniques to the
dataset. The process of choosing pre-processing techniques are explained in subsubsection 3.3.5.

After some early testing on the model and applying a heat map to the output it became clear that the model was
focusing too much on edges in the images and there was a need for data to be pre-processed to address this problem that
could lead to overfitting.Gaussian blur was applied to the images in order to change model from looking at these high
frequency features like the sharp edges from the augmented masks data. Adding this blur to the images prevented the
model from learning these high frequency features that is irrelevant for the model and caused overfitting. For the same
reason Salt & pepper was applied. This pre-processing sets random pixel values to 0 or 255. This should change the
focus of the model from looking at specific pixels and make decisions based on these. Later we discovered that there is
a function in Keras called ImageDataGenerator, that makes it possible to automatically pre-process the data-input with
some given probability. The model runs different types of pre-processing on the training data to make train the model to
perform better on new unseen data. The first pre-process is called Shearing. This makes the image distorted along an
axis in a given range. This created perception angles in the images and will help the model perform better on images
from different angels.

Figure 4: Pre-processed images which the model would train on

5



MAY 2, 2022

Another pre-processing that is performed in the ImageDataGenerator is Zoom, this will make the image zoom random
within a given range. This will train the model to perform better on input images with different scaling. Height shift
make the image shift random en the vertical-direction inside a given range. This again adds some randomness to the
data.

Pre-processing using rotation on the data, make the image randomly rotated within a range given in degrees. This
allows the model to learn on images with different orientation. In this case the model will also train on images where
people are tilting their head. To overcome the fact that pictures are captured in different types of lightning, some of the
input images are added random brightness level within a given range. This is important for the model to also perform
well on unseen data with another level of brightness. Horizontal flip, flips the picture horizontal randomly. This is useful
in our case because the augmented mask data is not symmetric. Horizontal flipping gives the dataset extra randomness.
It would not make sense to flip vertically with random probability because it is unlikely to get an input image of a face
upside down.

3.2.3 Pre-processing when predicting

When actually predicting images, most of the pre-processing was omitted, since that was just regularisation techniques
when training. However, there are some types of pre-processing that is important to have both when training and
predicting. The trained images had been cropped such that only the face was trained on. This was an important element
to replicate since the model has not been trained to handle background clutter. So using another CNN called ’Face
Recognition’7, the faces of all people in the image would be detected and cropped. Using MundbiNet these cropped
images would be predicted. Doing this also drastically reduces the amount of training and data the CNN would need to
give good results, since it only needs to focus on faces and not entire images.

3.3 Experiments

In the following, we will present the experiments that we have carried out through the project. Since the course was
structured as a top-down approach, we have increased our skill set as the project evolved. This also meant that we have
learned from early implementations and adapted. We will discuss this in the following.

3.3.1 The initial experiment

The initial plan was to create a project combining the Internet of Things with Deep Learning by running the model in
the cloud and using Raspberry Pi8 with a camera as input. The first experiment consisted mainly of testing pre-trained
models on a Raspberry Pi. Different kinds of face detection models were tested, and a model called ’Face Recognition’9

showed promising results. This made it possible to run the model on a raspberry pi, but only with 1 frame per second
on the camera. The usage of the camera was chosen to make it possible to build a fully fledged system that could be
evaluated in the wild. During this phase, it became clear that we had to focus more on the model itself, and less on
everything else. The key findings from these initial experiments was the knowledge we gained from trying out different
pre-trained models, and finding which models worked well. We found that the model ’Face Recognition’ 10 worked
very well.

3.3.2 The second experiment

Before starting with the second experiment we tried found a model and trained it based on code from PyImageSearch 11.
Parts of the code could be reused, but the training of the model had to be modified to fit the purpose of our case. We
rewrote the binary classifier to a classifier that could potentially classify many different classes. Our goal was to be
able to predict if the face in a given image had a mask placed correctly, and if it was not placed correctly how was it
then placed? People tend to place it below the nose or under the mouth, so we included these as two separate classes.
Additionally we added correctly positioned masks as a class, and masks placed on the forehead (later removed) as a
class. After training the model we got not so promising results as seen in Figure 5. At this time our dataset was not very
good and small as it only contained 300 images of poor quality as seen in Figure 6.

7https://github.com/ageitgey/face_recognition
8https://www.raspberrypi.org/products/raspberry-pi-4-model-b/?resellerType=home
9https://github.com/ageitgey/facerecognition

10https://github.com/ageitgey/facerecognition
11https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detector-with-opencv-keras-tensorflow-and-deep-learning/

6



MAY 2, 2022

Figure 5: Results from the second experiment with no x and y axis

Figure 6: A snippet of images from the initial dataset (source: https://www.pyimagesearch.com/2020/05/04/
covid-19-face-mask-detector-with-opencv-keras-tensorflow-and-deep-learning/)

3.3.3 Larger dataset

As we continued the studies, we gained knowledge on how to increase the accuracy in a convolutional neural network.
Our first step to create a better model was to get a larger dataset. After long search we figured that it was not possible to
find a labeled dataset of people wearing masks in different positions. We therefore wrote a python script that could
mount masks on images of people as described in subsubsection 3.2.1. We found a dataset of AI-generated images
of people and applied for access, which was granted. The dataset consisted of 10.000 images of people on a white
gray-white background with all races, genders and many different ages, see subsection 3.2. The dataset is generated by
another neural network and the source can be found at https://generated.photos/. The results in Table 3.3.3 were slightly
better than the test before. We quickly figured that the lack of accuracy was do to the way we evaluated on the test set,
which we fixed in subsubsection 3.3.4.

3.3.4 Overfit model

The problem in subsubsection 3.3.3 was that in the evaluation of the test set since we trained the model with images that
had been cropped to show only the face. The images we predicted on had not been cropped. Therefore we utilised the
previously mention ’Face Detection’ package to utilise its ability to detect and crop faces. We then looped over every
output image, which is a cropped image of the detected face. By doing this, we saw a significant increase in accuracy.

Note that this altering of the model while training was done early in the course and we later got a better strategy for
adjusting the model to perform better.

5 Epochs, 10 StepsPrEpoch, Batch Size 32
We started with few epochs and low learning rate and small batch size to get an idea on how the model would perform
before training the model with full capacity. The model was very good at finding some classes. Perfect placement of the

Correct 27 %
Below Nose 25 %
Chin 27 %
Only Nose & Mouth 21 %

Table 1: Accuracy for Correct, below nose, chin and only nose and mouth

7

https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detector-with-opencv-keras-tensorflow-and-deep-learning/
https://www.pyimagesearch.com/2020/05/04/covid-19-face-mask-detector-with-opencv-keras-tensorflow-and-deep-learning/


MAY 2, 2022

mask had an accuracy of 65%, which was much higher than the tests in subsubsection 3.3.3 but still bad for a classifier.
Below nose was often classified as chin. The after we increased the number of epochs and steps pr epoch for better
training, the accuracy of the model also increased.

20 Epochs, 50 StepsPrEpoch, Batch Size 64
In this sub-experiment we increased the amount of epochs, steps pr epoch even more and we also increased the batch
size. This resulted in an overfit model, that had a high accuracy. A visualisation of the results (accuracy and loss) can
be seen in Figure 7. The results clearly shows that 20 epochs in this setup is too much compared to our dataset. We
knew at this time that we had to focus more on regularization techniques in order to get rid of the overfitting, which we
focused on in subsubsection 3.3.5.

Figure 7: Overfit but accurate model

3.3.5 Implementing heatmaps and regularization techniques

In this experiment section we will explain the process of optimizing our model to reduce overfitting. The process was
long and involved, looking into heatmaps, gaussian blur, salt and pepper, shear, rotation, vertical flip, rescale, brightness,
dropout and also tweaking the amount of epochs, steps pr epoch and batchsize according to the new kind of data. We
wanted the model to reach a high accuracy more slowly with the hypothesis that the result would be a more robust model.
The first thing we looked into was heatmaps, because we wanted to get a clear picture of how the model predicted the
class of the image. This was used actively in the process of determining how well the model was doing and also helped
us to determine that our model was overfit in the start. In Figure 8 two heatmaps in a superposed version of the same
face is shown and one reference image of a correctly predicted perfectly placed mask. To the left with no mask, in the
middle with perfect placed mask that was predicted as being below the nose and lastly to the right a reference of how
the model usually predicted a perfectly placed mask. The model only looked at the mask or the face. We wanted the
model to look at both the mask and face since we believe that this would be an indication of a less overfit model.

Figure 8: Difference in what triggers the model

The idea of using heatmaps appeared when we manually analysed some images as seen in Figure 10. The lower left
prediction is clearly wrong, but still has a high accuracy. Therefore, we investigated it further and all agreed to look
more into regularization techniques to make the model better. We found that with the incorrectly labelled image in

8



MAY 2, 2022

Figure 9: Focus on the bottom left image

Figure 10, the model would only look at the face and ignore the mask, as seen in Figure 8, while it would only look at
the mask in the correctly labelled images with the label ’Correct’.

3.3.6 Systematic approach to increase accuracy

In this series of experiments, we attempted to explore new approaches to improve the accuracy of our model. In the
previous iterations we have had problems with the incorrect predictions having a very high First we attempted to make
the neural network deeper, by adding additional convolutional layers. The reasoning behind this was to increase the
neurons receptive fields, allowing them to detect larger features. But we could not achieve a model more accurate than
in our previous experiments. In fact, the resulting model could not predict anything.

Reverting our changes, we increased the intensity of our pre-processing. Our dataset had already received some
pre-processing in the form of salt and pepper and a minor gaussian blur subsubsection 3.2.1. Apart from this, we
increased the intensity of rotation, lighting changes, shear and zoom. This resulted in a model with much less overfitting.
When we tried to predict images with the trained model, the results were very inaccurate. To combat a problem
with the face detector cropping the faces with different height we attempted to add a height shift. This also lead
to very low accuracy. At this point we found that we had misunderstood one of the standard parameters in Keras
ImageDataGenerator - Namely vertical-flip, which we had included as a parameter. This meant that half the images
had been flipped to be upside-down instead of just being mirrored as we had thought. Removing this restored our high
accuracy. We settled for relatively low pre-processing:

Rescale Shear Range Zoom Range Rotation Range Brightness Range
1./255 0.1 0.2 20 [0.6, 1.3]

Our next approach was to see the difference in accuracy when altering the dimensions of the input image. Most of the
models that have been trained previously have been with 64x64 input images. First we attempted to train the model with
256x256 images while making the convolutional layer three layers deep. We received poor results. Reducing the image
size to 32x32 with a single convolutional layer gave great results. A reason behind this could be that in this particular
use case, the network does not need many features in the data to recognise the position of the mask. Therefore a larger
image with more details could confuse more than could help. To many redundant features in the data could result in
more overfitting.

9



MAY 2, 2022

3.3.7 Fine-tuning

When training, the model tended to overfit in the last epochs. We noticed that by looking at the loss curve on the
validation set started to increase. This gave us the idea of using early-stopping. Just stop the training as soon as the loss
starts increasing.

We also introduced batch normalization in our model to allow us to train the model with higher learning rate. This is
described further in subsection 3.1.

Figure 10: Loss and Accuracy for the final model

After getting the model to perform very well on our validation grid Figure 11, consisting of unseen generated images
like the one from our dataset, we wanted to test how the model performed on unseen images of us. Here we discovered
that the model is very light-sensitive and only perform well in good lightning conditions. We tried increasing the range
of brightness added in the pre-processing to make the model perform better on images in different lightning. It was still
hard for the model to perform well on images from the wild when images was not in the right lightning conditions ore
people would wear i mask that had a different color than the blue mask from the dataset. This made us set up some
criteria for the input data so that we could realise the limitations for our model as seen in section 5.

10



MAY 2, 2022

4 Results

MundbiNet had a very high accuracy (see section 4) on the AI generated images which were exclusively used when
training the model. These predictions were also very consistent.

Loss Accuracy Validation Loss Validation Accuracy
Epoch 15 0,0186 0,996 0,0237 0,995

Unfortunately the model still had difficulties predicting actual images of real humans as seen in Figure 11. Lighting,
angle and mask type were triggering the wrong features. During the final stages of the experimentation several types of
regularization techniques were applied, but we saw no improvements on images in the wild. It was expected that a
rotation of 20 degrees in pre-processing would help.

Figure 11: Predictions of wild images (left) and AI generated images (right)

4.1 Discussion of the results

In the following, the results produced by MundbiNet is discussed and compared to related work.

4.1.1 Visualising using t-SNE

After visualising the data using t-SNE it is clear that that the model can easily classify the different AI generated images
from one another, correctly identifying the position of their mask. The entire test-set of 7040 images were used for the
visualisation in Figure 12. Visualising a large dataset of actual images from the wild would likely reveal a visualisation
with less clear boundaries between the classes.

4.1.2 Heatmaps of classes

Inspecting the superimposed heatmaps Figure 13, there is a clear difference in the weights depending on the mask
position. There is a great focus on the hair when a person is not wearing a mask, which is odd because most of the hair
is unobstructed by the mask. On a correctly placed mask, the model will focus on the edges at the bottom of the mask.
This makes sense because wearing the mask below the nose or on the chin will block this part of the face, which makes
these edges unique to a correct placement. The last image only focus on a very few edges on the image, which is not
ideal, and indicates that the model is still overfit, even after much pre-processing.

11



MAY 2, 2022

Figure 12: t-SNE visualisation of the final model

Figure 13: Superimposed heatmaps for the four different classifications

4.1.3 Model Accuracy

The final model MundbiNet is very accurate, but only under the right conditions. These conditions are relatively strict,
which makes the model unfeasible to implement in the real world as it currently is. Training the model has been a
constant battle with increasing its accuracy while attempting to reduce overfitting. This has been difficult, mainly due
to the fact that the dataset is very generic and all images are very similar. The masks are also identical, and placed in
almost the same position. These factors makes it easy for the model to ’cheat’ instead of correctly analysing the images.
Many of the regularisation techniques that were applied did not have such a big effect as intended.

4.1.4 Comparison to related work

The primary paper to compare MundbiNet with is M. Loey et al’s paper[2]. They present their work on how a hybrid
model that combines deep learning and traditional machine learning can predict whether a person has a mask on or not.
The first comparison will focus on the pandemic impact followed by a comparison of the different approaches in terms
of architecture and results. Loey et al’s paper has a naive implementation if we look at the different ways of wearing a
mask. People are not as binary as they present it and this is also the reason by the multi-class classifier, MundbiNet,
which takes the different ways of wearing a mask into consideration. Ideally, the model should be extended with more
classes and also a more images of real humans wearing the mask with correct labelling to make it work better on real
images.

Loey et al had high accuracy, when they evaluated their model on 3 different datasets.

12



MAY 2, 2022

"The SVM classifier in RMFD achieved 99.64% testing accuracy. In SMFD, it gained 99.49%, while
in LFW, it reached 100% testing accuracy" - [2] Section: Conclusion and future works.

The different testing accuracy is very close to the accuracy of MundbiNet, but the level of deepness is far from the same.
MundbiNet has only one convolutional layer where as Loey et al’s model has 18 layers. Their model is a hybrid deep
transfer learning model with machine learning methods and is build with the architecture of ResNet. MundbiNet is a
pure CNN.

5 Limitations and future work

The primary limitations of this project have been that the model is not doing well at predicting in the wild. This
limitation primarily comes down to a limited dataset, which we have produced on our own based on an AI generated set
of photos. It is unknown how the model CNN would react with a strong dataset from the real world with labels. Future
work will be to gather a large labelled dataset and train the classifier with this data. The current dataset is generated
using the same mask image for augmenting all the training data. In future work the generating of images for training
should include different types of masks in different settings to prevent overfitting. To make the model perform better on
images in the wild, a more aggressive data augmentation is suggested for future work. An augmentation to explore
could be color jitter to augment random change in brightness, contrast and saturation of training images.

Several regularization techniques have not been explored yet. Changing the hyperparameters regarding weight decay
have not been implemented nor tested, which is left for future work. All in all, there are many different approaches that
can be used to optimize the network. Augmentation to prevent occlusion could also have been implemented, but this is
also left for future work.

It comes down to what the purpose of the model is and in our case it was to distinguish between different ways of
wearing a face mask.

6 Conclusion

In this report the development, training and validation of MundbiNet is presented. In section 1 the research questions
were formulated and in this section, we will give an answer to them based on the work of this report.

• Is it possible to build a multi-class classifier that can classify 4 different variations of mask placement? Based
on the results in section 4 it can be concluded that the classifier is successful at predicting the four different
classes with an accuracy of 99,5%.

• How accurate is the classifier on images it has never seen? The small test set in section 4 showed that all of
the 16 images from the grid were correctly classified. This was not the case with the earlier model which were
tested in Figure 10.

• How well is the classifier at predicting on real images, when it has been trained on generic AI generated
images? As seen in Figure 1 MundbiNet can be used on a live feed from a camera and classify the image
stream from the wild. It is not perfect, which is also what could be assumed with the dataset. Figure 11 shows
that improvements still have to be implemented in order for the model to be good at predicting in the wild. We
still think it is a very good baseline that it is able to predict the correct category for Mette Frederiksen as seen
in Figure 11.

References

[1] Yann LeCun et al. “Gradient-based learning applied to document recognition”. In: Proceedings of the IEEE 86.11
(1998), pp. 2278–2324.

[2] Mohamed Loey et al. “A hybrid deep transfer learning model with machine learning methods for face mask
detection in the era of the COVID-19 pandemic”. In: Measurement 167 (2020), p. 108288.

[3] Luis Perez and Jason Wang. The Effectiveness of Data Augmentation in Image Classification using Deep Learning.
2017. arXiv: 1712.04621 [cs.CV].

[4] W. Samek et al. “Evaluating the Visualization of What a Deep Neural Network Has Learned”. In: IEEE Trans-
actions on Neural Networks and Learning Systems 28.11 (2017), pp. 2660–2673. DOI: 10.1109/TNNLS.2016.
2599820.

13

https://arxiv.org/abs/1712.04621
https://doi.org/10.1109/TNNLS.2016.2599820
https://doi.org/10.1109/TNNLS.2016.2599820

	Introduction
	Related work
	Methods
	Network architecture
	Dataset
	Data augmentation
	Pre-processing of images
	Pre-processing when predicting

	Experiments
	The initial experiment
	The second experiment
	Larger dataset
	Overfit model
	Implementing heatmaps and regularization techniques
	Systematic approach to increase accuracy
	Fine-tuning


	Results
	Discussion of the results
	Visualising using t-SNE
	Heatmaps of classes
	Model Accuracy
	Comparison to related work


	Limitations and future work
	Conclusion

